Show that any binary relation that is both reflexive and Euclidean is transitive, i.e., show that

 $\forall x Rxx, (\forall x, y, z) (Rxy \land Rxz \rightarrow Ryz) \vdash (\forall x, y, z) (Rxy \land Ryz \rightarrow Rxz).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz) \forall Int \times 3 14$
Next, look at the conclusion. What is the main operator(s)?
What strategy does it suggest?

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz) \forall Int \times 3 14$ Since it is a sequence of three $\forall s$, we will reach 10 by using $\forall Int \times 3$.

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz) \forall Int \times 3 14$ As a result, what formula should be taken as subgoal?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(3) $Rab \land Rbc \rightarrow Rac$ CP 3-12
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$ $\forall Int \times 3$ 14
Notice that the choice of a, b, c doesn't matter, as long as the two conditions on $\forall Int$ (remember?) are met.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(3) $Rab \land Rbc \rightarrow Rac$ CP 3-12 Now, this subgoal is
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$ $\forall Int \times 3$ 14 Now, this subgoal is a CP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(3) $Rab \land Rbc$ Supp
Here's a good trick for
such deductions: Make
Rac match the con-
sequent of the second
premise, to reach our
sub-subgoal by MP.
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$ $\forall Int \times 3$ 14

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(3) $Rab \land Rbc$ Supp
 $Rab \land Rbc$ Supp
 $R_a \land R_c \rightarrow Rac$ That means we'll in-
stantiate y with a and
z with c in line 2.
(13) $Rab \land Rbc \rightarrow Rac$ CP 3-12
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$ $\forall Int \times 3$ 14

(1)
$$\forall xRxx$$
 Prem
(2) $\forall x, y, z(Rxy \land Rxz \rightarrow Ryz)$ Prem
(3) $Rab \land Rbc$ Supp
(4) $Rba \land Rbc$ Rbc Let's try to deduce the antecedent to set up our MP.
(13) $Rab \land Rbc \rightarrow Rac$ CP 3-12
(14) $(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$ $\forall Int \times 3$ 14

(1)	$\forall x Rxx$		Prem	
(2)	$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$		Prem	
(3)	Rab	∧ Rbc	Supp	
				Rhc is easy to get
	Rba Rbc			But how will we ob- tain <i>Rba</i> ? We'll again
	Rba	$\land \textit{Rbc}$		use the same trick we
	R <u>b</u> a	$h \wedge R\underline{b}c o Rac$		used below.
	Rac			
(13)	$Rab\wedgeRb$	$bc ightarrow { extsf{Rac}}$	CP 3-12	
(14)	$(\forall x, y, z)$	$(Rxy \land Ryz \rightarrow Rxz)$	$\forall Int \times 3.14$	

(1)	$\forall x Rxx$	Prem
(2)	$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$	Prem
(3)	$Rab \wedge Rbc$	Supp
	$R_b \land R_a ightarrow Rba$	
	Rba	
	Rbc	
	$Rba \wedge Rbc$	
	$R\underline{b}$ a \wedge $R\underline{b}$ c $ ightarrow$ R ac	
	Rac	
(13)	$\mathit{Rab} \land \mathit{Rbc} ightarrow \mathit{Rac}$	CP 3-12
(14)	$(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$	$\forall Int \times 3.14$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

(1)	$\forall x Rxx$	Prem	
(2)	$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$	z) Prem	
(3)	$Rab \wedge Rbc$	Supp	
			Do not forget that you
	$R\underline{a}b \wedge R\underline{a}a o Rba$		can instantiate two
	Rba		variables with <i>a</i> !
	Rbc		
	$Rba \wedge Rbc$		
	$R \underline{b}$ a $\wedge R \underline{b}$ c $ o$ R ac		
	Rac		
(13)	$Rab \land Rbc \to Rac$	CP 3-12	
(14)	$ (\forall x, y, z) (Rxy \land Ryz \rightarrow Ryz) (\forall x, y, z) (Rxy \land Ryz) (\forall x, y,$	$2xz) \forall Int \times 3.14$	

$\forall x Rxx$	Prem
$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$	Prem
$Rab \wedge Rbc$	Supp
$Rab \wedge Raa$	
$R\underline{a}b \wedge R\underline{a}a o Rba$	
Rba	
Rbc	
$Rba \wedge Rbc$	
$R \underline{b}$ a $\wedge R \underline{b}$ c $ o$ R ac	
Rac	
$\mathit{Rab} \land \mathit{Rbc} ightarrow \mathit{Rac}$	CP 3-12
$(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$) $\forall Int \times 3 14$
	$ \begin{array}{c} \forall x Rxx \\ \forall x, y, z (Rxy \land Rxz \rightarrow Ryz) \\ \hline \\ \hline \\ Rab \land Rbc \\ Rab \land Raa \\ Rab \land Raa \\ Rba \\ Rba \\ Rbc \\ Rba \land Rbc \\ Rba \land Rbc \\ Rba \land Rbc \\ Rac \\ Rac \\ Rab \land Rbc \rightarrow Rac \\ (\forall x, y, z) (Rxy \land Ryz \rightarrow Rxz) \end{array} $

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

(1)	$\forall x Rxx$	Prem
(2)	$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$	Prem
(3)	$Rab \wedge Rbc$	Supp
(4)	Rab	∧Elim
	$Rab \wedge Raa$	
	$R_{\underline{a}}b \wedge R_{\underline{a}}a o Rba$	
	Rba	
	Rbc	
	$Rba \wedge Rbc$	
	$R\underline{b}$ a \wedge $R\underline{b}$ c $ ightarrow$ R ac	
	Rac	
(13)	$\mathit{Rab} \land \mathit{Rbc} ightarrow \mathit{Rac}$	CP 3-12
[14)	$(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$	$\forall Int \times 3.14$

(1)	$\forall x Rxx$	Prem
(2)	$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$	Prem
(3)	$Rab \wedge Rbc$	Supp
(4)	Rab	∧Elim
(5)	Raa	$\forall Elim \ 1$
	${\it Rab} \wedge {\it Raa}$	
	$R\underline{a}b \wedge R\underline{a}a o Rba$	
	Rba	
	Rbc	
	$Rba \wedge Rbc$	
	$R \underline{b}$ a $\wedge R \underline{b}$ c $ o$ R ac	
	Rac	
(13)	$\mathit{Rab} \land \mathit{Rbc} ightarrow \mathit{Rac}$	CP 3-12
(14)	$(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$	$\forall Int \times 3.14$

(1)	$\forall x Rxx$	Prem
(2)	$\forall x, y, z (Rxy \land Rxz \rightarrow Ryz)$	Prem
(3)	$Rab \wedge Rbc$	Supp
(4)	Rab	$\wedge Elim$
(5)	Raa	$\forall Elim \ 1$
(6)	$Rab \wedge Raa$	\wedge Int 4,5
(7)	$R_{\underline{a}}b \wedge R_{\underline{a}}a o Rba$	$\forall Elim \times 32$
(8)	Rba	MP 7,6
(9)	Rbc	$\wedge Elim 3$
(10)	$Rba \wedge Rbc$	∧Int 8,9
(11)	$R \underline{b}$ a $\wedge R \underline{b}$ c $ o$ R ac	$\forall Elim \times 32$
(12)	Rac	MP 11,10
(13)	$\mathit{Rab} \wedge \mathit{Rbc} o \mathit{Rac}$	CP 3-12
(14)	$(\forall x, y, z)(Rxy \land Ryz \rightarrow Rxz)$	$\forall Int \times 3.14$