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Abstract Essential tensions remain in our understanding of the reasons underly-
ing the striking success achieved in science by applying mathematics. Wigner and
many likeminded scientists and philosophers conclude that this success is a miracle,
a “wonderful gift which we neither deserve nor understand.” This essay seeks to
dissipate that aura of mystery and bring the factors underlying the success of applied
mathematics into the fold of scientific rationality.

Inquiries into the nature of mathematics as a science of its own and into its role in
empirical science have a venerable tradition. Given that mathematics displays a kind
of exactness and necessity that appears to be in sharp contrast with the contingent
character of worldly facts, the problem that is perhaps the most unsettling exam-
ines how mathematics can be used to adequately represent the world. For instance,
Einstein argued that “[t]he laws of mathematics, as far as they refer to reality, are
not certain, and as far as they are certain, do not refer to reality” [6]. Similarly,
Russell maintained that “[t]he exactness of mathematics is an abstract logical exact-
ness which is lost as soon as mathematical reasoning is applied to the actual world”
[8]. And yet, since the scientific revolution, efforts devoted to writing the book of
the world in the language of mathematics have been resoundingly successful.

In light of this tension, many scientists and philosophers maintain that the applica-
bility of mathematics is condemned to remain intrinsically mysterious. For instance,
Wigner famously claimed that the “miracle of the appropriateness of the language
of mathematics for the formulation of the laws of physics is a wonderful gift which
we neither understand nor deserve” [10]. Dirac has similarly claimed that “[t]here
is no logical reason why [the method of mathematical reasoning to study natural
phenomena] should be possible at all, but one has found in practice that it does work
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and meets with remarkable success” [5]. It is true that, due to resilient tensions in our
understanding, the applicability of mathematics is surrounded by an aura of mystery,
but the present essay seeks to bring it back into the fold of scientific rationality.

A Mosaic of Problems

Failure to make significant progress towards solving a foundational problem often
results froma clumsy understanding of that problem. In the case of the applicability of
mathematics, it is also the case that part of the mystery stems from gathering many
problems that require different types of solutions under the same umbrella. The
striking achievement we wish to explain is the success of our use of mathematics in
scientific practice. Yet many of the most widely discussed themes are only tenuously
related to the explanandum.

Some such themes focus on mathematics qua language. There is bewilderment
that it is even possible to use the language of mathematics to describe the world. In
order to see that no mystery lies here, we must regard the activity of mathematical
modelling as any other modelling practice. Constructing a model always involves
the choice of a medium for the representation. Yet regardless of whether the medium
chosen is plastic, wooden sticks, a picture, or statements in some language, models
will succeed in capturing some aspects of a system, while other aspects will be
idealized away. Each medium has its strengths and weaknesses. The main advantage
of mathematics qua language is its considerable expressive power and versatility. If
we consider the generality of foundational approaches to mathematics such as set
theory or category theory, it would be difficult to imagine possible states of affairs
that could not be somehow describable in mathematical terms. Hence the possibility
of using the language of mathematics to describe the world is not in itself very
surprising. But more importantly, the expressive power of mathematics qua language
should not be conflated with our explanandum, for many mathematical expressions
do not successfully apply. So what needs explaining are the circumstances that make
some of the mathematics apply so successfully.

Another such theme focuses on the unexpected applicability of mathematical
concepts developed in epistemic contexts in which no conceivable applications were
anticipated. Yet such questions do not seek the actual reasons that underlie the suc-
cesses of various applications. Instead they require an account of the conditions of
possibility of such successes. However, in order to account for these actual suc-
cesses, we would simply assume by fiat (based on the recent history of science) that
mathematics is applicable, and then seek the causes of successful applications.

Thus, the problem is not one of characterizing mathematics as a language. Rather,
it is one of explaining how to compare the virtues of different mathematical represen-
tations in a way that accounts for the success of those with a comparative advantage.
It is common to identify truth as the theoretical virtue fulfilling this role. But even
if we are willing to grant the broad point that the fundamental goal of science is the
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pursuit of truth, it cannot be denied that few of our successful models and theories
are exactly true—indeed some are not even remotely true.

As I will argue in the next two sections, idealizations and other epistemic shortcuts
play an indispensable role in the effective use of scientific rationality. For this reason,
I take themain problem to be this:Given that the construction andmanipulation of our
successful mathematical models of reality is riddled with uncertainty, measurement
error, modelling error, analytical approximations, computational approximations,
and other forms of guesses and ignorance, how can their remarkable accuracy be
explained? On the basis of the commonsensical “garbage in, garbage out” rule,
this accuracy appears rather baffling, and accordingly I call this the problem of the
uncanny accuracy of mathematics.

Too True to Be Good

As I have pointed out, an explanation of the actual success of applied mathematics
in scientific practice is unlikely to be grounded in the literal truth of models, since
very few models have this property de facto. However, to understand the nature of
the success we seek to explain with more precision, it is important to acknowledge
that this failure to be exactly true is a feature, not a bug. Indeed, any good theory
idealizes away aspects of a physical system. Truesdell [9] elegantly make the point
that “[o]ne good theory extracts and exaggerates some facets of the truth. Another
good theory may idealize other facets. A theory cannot duplicate nature, for if it did
so in all respects, it would be isomorphic to nature itself and hence useless.” Theories
and models play such a prominent role in physics because untangling the world is
beyond the reach of our unmediated reason. We do not build theories to duplicate
this complexity, but to set it aside as much as possible.

To illustrate this point, consider three different kinds of “idealized bodies” (or,
idealized “building blocks”) employed in classical mechanics to represent physical
systems: mass-points particles, perfectly rigid bodies, and perfectly continuously
deformable bodies. Despite their fundamentally idealized character, each type gives
rise to a specific approach to classical mechanics. Articulating different idealized
perspectives that complement each other enables us to efficiently get a grasp on the
inner workings of physical systems. On the other hand, insisting on a sub specie
aeternitatis true apprehension would be a path toward certain failure. A model or
theory that contained “the whole truth and nothing but the truth” would quite simply
be too true to be good.

Even so, if idealizations are to lead to any success, not any distortion can be war-
ranted. Models should be true enough in order to be good. Mathematical modelling
is a question-driven endeavour, so that the success has a pragmatic dimension. In
applied mathematical practice, one considers real systems, i.e., systems as we actu-
ally encounter them in the universe we live in. So, in contrast to abstract models,
a real model is not populated with mass-points, rigid bodies, or continuous media,
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but rather with things like tennis balls, blocks of concrete, wood studs, steel beams,
planets, galaxies, impure water, etc. In the presence of such real systems, we formu-
late specific questions that determine what aspect of the system is the behaviour of
interest. Here are examples of such questions:Would this structure break under a typ-
ical load?Would a certain solution containing likely impurities remain stable under a
certain increase of temperature? Can the observed trajectory of Uranus be explained
by the presence of another heretofore unobserved planet? The task of mathematically
modelling real systems is to derive a mathematical representation of the system that
will allow us to correctly capture some of its physical properties. From this point of
view, a good model does not have to correctly capture all aspects of the system, but
only those relevant to the questions that concern us in the first place. Moreover, the
question-driven character of applied mathematics makes it clear that representations
do not have to be true in order to lead us to correct answers—selective accuracy is
sufficient.

It is hard to give a completely general account of the way in which mathematical
representations are constructed in order to answer our questions about the behaviour
of interest, but Fig. 1 perhaps comes close. Starting from a raw, non-mathematical
real system, we choose idealized building blocks as our representational medium
and attempt to articulate what is mathematically relevant to the problem. The selec-
tion of modelling assumptions is a crucial step, which is often plagued with error
and uncertainty. It is sometimes possible to say whether modelling assumptions are
factual or not, but it is typically hard to directly assess such claims in a compara-
tive way. In other words, it is hard to determine whether one assumption is as far
from the truth as another. Making such judgements is even more difficult for sets
of modelling assumptions. Moreover, whether this error will invalidate our answers
cannot be determined at this point. While we only have particular facts about a sys-
tem, the evolution of that system is underdetermined. Without an underlying theory
providing general kinematic principles, such as a geometrical structure and general
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conservation laws, nomodelling equations could be derived to characterize the behav-
iour of the system. Similarly, a general theory does not have sufficient specificity to
predict anything about the behaviour of systems without being supplemented with
specific modelling assumptions [7]. It is this interconnected collection of hypotheses
that faces the tribunal of experience.

Indeed, this collection of hypotheses determines dynamical equations character-
izing the temporal behaviour of the system (i.e., equations describing the evolution
of points or regions in a state space through time). The evolution rule is typically
a differential equation (continuous time) or a difference equation (discrete time).
Finding the trajectory in the state space prescribed by the rule amounts to solving the
system, and it is a very crucial step in extracting the information needed for empiri-
cal tests. Without effective solution methods, there is no prediction nor explanation,
only speculation. However, this step often involves significant analytical and com-
putational challenges, and we return to this theme in next section. But presuming
that information has been accurately extracted, we would then obtain answers to our
questions and evaluate the successfulness of our model.

Success as a Balancing Act

The ineliminable need to set aside complexity puts us in a situation in which the sets
of modelling assumptions from which we derived model equations are extremely
simplified compared towhatwould faithfully capture real physical systems.Needless
to say, when we build a model for a system of real bodies, the inaccuracy and
incompleteness of the modelling assumptions could very well lead us to incorrectly
answer questions about the behaviour of interest. To establish whether this is the
case, a traditional view enjoins the modeller to compare the idealized model to a de-
idealizedmodel derived froman accurate and complete set ofmodelling assumptions.
Thiswould allegedly guarantee that themodel equations thus derivedwould correctly
answers our questions about the system. Batterman [1] pinned down the idea nicely:
“The aim here is to effect a kind of convergence betweenmodel and reality. One tries,
that is, to arrive at a completely accurate (or ‘true’) description of the phenomenon
of interest. On this view, a model is better the more details of the real phenomenon
it is actually able to represent mathematically.” However, to experienced applied
mathematicians, it is clear that the more details are built into the model, the more
mathematically intractable the mathematical equations representing the behaviour
of interest are likely to be. That means that, even if we can somehow derive model
equations from our accurate and complete set of modelling assumptions, it is likely
that we will not be able to use them to make predictions and to obtain answers to
our questions concerning the behaviour of interest. That would be a representation
that is not manageable, no matter how true, accurate, or complete it is—it would be
useless to us.
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Fig. 2 The fundamental
balancing act at the core of
applied mathematics
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The improvement of the accuracy of the modelling assumptions brings about a
decline in the tractability of the model. Thus, counter-balancing the view of the role
of appliedmathematics as a language for formulating true representations of systems,
there is the view that mathematics is “the art of finding problems we can solve,” as
Hopf said (cited in [2]). Since in applied mathematics there is in addition a question
of accuracy, there is always a cost-benefit analysis to perform. The most important
contribution of mathematics to modelling is that it provides the tools to do just that.
What makesmathematical modelling difficult is that above all wemust find a balance
between accuracy, completeness, and tractability, as in Fig. 2. Finding this balance
with respect to the behaviour of interest is the true measure of success in applied
mathematics.

But how can we know whether we have reached this balance? How do we distin-
guish accidental positive results from models that truly capture the essential features
of the system? Perhaps this is the mysterious part that will resist our efforts to bring
it into the fold of reason.

Rationalizing the Uncanny Accuracy of Mathematics

We have seen that the complexity of the world is such that models will typically
not be exact representations of physical systems. Moreover, even simplified models
typically have a level of complexity such that extracting information frommodelling
equations will lead to an additional layer of error. Thus, the key to successful appli-
cations of mathematics is to establish that a description of the behaviour of a system
is in fact approximately true, without causing an overflow of information that would
undermine our ability to assess the situation. In this respect, an essential virtue of
mathematics is that it can be applied to itself in a way such that finding whether
a representation is close to the truth is easier than finding what the truth is. I will
explain this slogan below based on general insights from perturbation theory and
numerical analysis.
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The concepts of sensitivity to and robustness under perturbations play a crucial
role in any perspective on error management. There are many rigorously defined
concepts in applied mathematics which capture aspects of this very general idea
(e.g., Lyapunov exponents, condition numbers, Lipschitz constants, etc.). But for the
sake of this essay, an intuitive illustration will suffice. Most of us have at some point
had to live in an apartment of questionable quality. Taking a shower in apartments
of this ilk is not always without danger. Indeed, a very slight push on the shower
knob—technically, we call this a perturbation of the knob’s position—might lead
to quite dramatic changes in water temperature. In such a case, we can say that the
water temperature is very sensitive to perturbations. Robustness under perturbations
is just the opposite. If you were so lucky to have air conditioning in this apartment,
odds are that however much you cranked the knob, the ambient temperature would
not change much. So, the ambient temperature was robust under perturbations. Great
accuracy in the shower knob position would be required to correctly predict water
temperature, but large errors in the AC unit’s knob position could be tolerated in
order to accurately predict ambient temperature.

The idealization, simplification, error, and uncertainty contained in models we
construct to characterize some behaviour of interest can also be understood as per-
turbations. Let me first illustrate the point with a modern approach to understanding
the impact of computational error as it occurs in computer simulations. Suppose
that a dynamical system specified by an ordinary differential equation x ′ = f (x)

and an initial condition x(0) = x0 has been derived as in Fig. 1 to represent a given
physical system. Using some computer algorithm, we find a trajectory x̂(t) that will
hopefully describe the behaviour of the system accurately. However, there is no
a priori guarantee that it will. We need to first analyze the various sources of error.
The applied mathematical toolbox offers many ways of talking about error. In what
follows I will use the notion of residual error as it is easiest to interpret in physical
contexts [4]. If we somehow knew the exact solution x(t) to our dynamical system,
we would find that x ′ − f (x) = 0 just by re-arranging the terms. However, since
the simulated solution x̂(t) contains some degree of computational error, x̂ ′ − f (x̂)

would not be equal to 0. The quantity � given by � = x̂ ′ − f (x̂) is, what we call,
the residual error. Now, we can reverse-engineer the situation. Instead of saying that
x̂(t) is hopefully approximately solving the equation from the dynamical system, we
can say that it is an exact solution to the dynamical system x ′ = f (x) + �. With this
change of perspective, we can now treat� as a perturbation of the original dynamical
system. It could be thought of as a breeze, a vibration, a small gravitational effect,
or anything relevant. If the magnitude of the computational error, reinterpreted in
physical terms, is smaller than the expected modelling error and uncertainty, then
the computed solution is deemed true to our modelling assumptions.

In fact, for all we know, such a solution could exactly represent the physical
system. As mentioned, the representation x ′ = f (x) is not in general exact due to
various sources of modelling and experimental error. However, as the expressive
power of mathematics is virtually unlimited, one can presume that some other equa-
tion exactly represents the system, say x ′ = f (x) + εg(x), where ε is a small term
and εg(x) acts as a correcting factor. We could once again verify the residual error
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of the computed solution x̂ mentioned above, but this time with respect to the ‘true’
equation. Of course, we will not in general have an exact characterization of the cor-
rection factor and, as a result, will not exactly know the value of the residual error.
However, we can study the amplitude of the residual using qualitative methods over
various intervals of time, such as the limiting behaviour of the residual error as t goes
to infinity. The intervals and parameters of choice for the error analysis will once
again be determined by the behaviour of interest. Often, we will find that the residual
error is vanishingly small. We then have a precise and effective method to rationalize
the fact that even if the construction and manipulation of our successful mathe-
matical models of reality is riddled with uncertainty, measurement error, modelling
error, analytical approximations, computational approximations, and other forms of
guesses and ignorance, they can be remarkably accurate.

Explaining Miracles Away

The uncanny accuracy of mathematics has been claimed to be miraculous in the
sense that it does not seem to admit any rational explanation. To decide whether
such a claim can be defended, it is necessary to have a conception of what might be
received as a rational explanation. This, in turn, requires a correct understanding of
the “logic” of model construction and model assessment. Precisely articulating such
metatheoretical concepts is the province of epistemology. As a consequence, a solu-
tion to the problem of the applicability of mathematics will be of an epistemological
nature, rather than of a metaphysical one.

In addition to the de facto presence of falsehoods, errors (intended and not
intended), approximations, and uncertainty (including both known and unknown
unknowns) in science, there are other elements that we have not yet mentioned.
Indeed, cases of fortunate mistakes, aesthetic preferences, and personal idiosyn-
crasies of influential figures are also integral parts of real science. However, it does
not follow that all those factors play an equally important role in epistemology, as its
point is to explain the reliability of scientific knowledge and to delimit its scope. As
a result, epistemology does not take the actual thought processes of scientists as its
objects, or the actual words used by scientists, or even what scientists take their own
activity to be. Rather it envisages a better scenario in which the claims, hypotheses,
models, theories, and methods are accounted for not by fortunate mistakes, idiosyn-
crasies, etc., but by a rationally compelling presentation they ought to have. To use
the term introduced by Carnap [3], the object of scientific epistemology is a rational
reconstruction of science.

The dimension of the rational reconstruction process that generates an object of
study suitable for a properly epistemological analysis is often presented as an invec-
tive to distinguish the context of discovery from the context of justification. The
distinction between the contexts is one between processes of discovery and methods
of justifications. The phrase “methods of justification” denotes what satisfactorily
establishes knowledge claims, independently of the beliefs of the historical actors.
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It is important to emphasize that which methods of justification are rationally admis-
sible is not god-given, as there is room for disagreement. It is nonetheless clear that
what is to be included in the context of justification is determined by what methods
and tools are considered rational. Different choices might result in different orga-
nizations of what belongs to what context. The stakes are clear: if the methods of
justification we are willing to admit are too restricted, then some essentially success-
ful scientific practices will appear to be miraculous, without any rational grounds.

Scientists and philosophers alike often depict the scientific method as containing
two essential methods of justification. On the one hand, there are the methods of
probability theory and statisticswhich aremeant to underly inductive inferences from
observed phenomena. On the other hand, logic and axiomatics are meant to capture
the deductive structure of scientific theories. Probability and statistics are essentially
about making precise judgements about the likelihood of hypotheses. Deductive
logic is essentially about truth-preserving inferences (i.e., inferences such that if
their premises are true, so will their conclusion). These methods are undoubtedly
rationally admissible when properly utilized, but it is essential to emphasize that they
do not exhaust the field of rational justifications. It is therefore necessary to revise
and supplement our “rational reconstruction toolbox,” for otherwise significant parts
of applied mathematical sciences would be wrongly considered methodologically
unsound.

The successes of applied mathematics crucially depend on the methods of pertur-
bation theory. The type of questions they address are not about probability, likelihood,
or truth-preserving inferences. Instead, they concern questions of this type: if causal
factors were slightly changed or if parameters were tweaked in various ways, what
impact would it have? To see the contrast with deductive logic even more sharply,
one could say that the methods of perturbation theory are essentially about deter-
mining the circumstances in which arguments with false premises lead to accurate
conclusions. Deductive logic cannot address such questions, for even if its inference
forms preserve truth, they do not in general preserve approximate truth. Perturbation
methods give us the resources we need to learn how to live with falsehood, and this
is key to understanding the factors that make so many mathematical models and
theories uncannily accurate.

To conclude, persistent failures to unravel the mystery of the applicability can
be attributed to an insufficiently rich way of rationally reconstructing scientific and
mathematical knowledge. To the extent that the problem of uncanny accuracy is con-
cerned,weneed to suitably enrich the catalogueofmethods admissible for the rational
reconstruction of the concepts of science and mathematics. We should not contem-
plate elaborate counterfactual constructions about pristine theories that contain no
error and uncertainty, but learn how to live with them, and love them, for they are
the conditions of possibility of successful science. Then, and only then, the allegedly
miraculous character of the applicability of mathematics will be demystified.
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