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Modern mathematical sciences are hard to imagine without appeal to efficient computa-
tional algorithms. We address several conceptual problems arising from this interaction by
outlining rival but complementary perspectives on mathematical tractability. More spe-
cifically, we articulate three alternative characterizations of the complexity hierarchy of
mathematical problems that are themselves based on different understandings of compu-
tational constraints. These distinctions resolve the tension between epistemic contexts in
which exact solutions can be found and the ones inwhich they cannot; however, contrary to
a persistent myth, we conclude that having an exact solution is not generally more epis-
temologically beneficial than lacking one.

1. Introduction. In Extending Ourselves, Humphreys set two desiderata for
a scientifically informed philosophical approach to science: ð1Þ “in dealing
with issues concerning the application of mathematical models to the world,
as empiricists we should drop the orientation of an ideal agent who is com-
pletely free from practical computational constraints of any kind,” and yet
ð2Þ we should not “restrict ourselves to a minimalist position where what
is computable is always referred back to the computational competence of
human agents” ðHumphreys 2004, 124Þ. While the second desideratum ðthe
rejection of ‘minimalism’Þ has potentially transforming consequences for how
empiricist philosophers look at science, here we will heed the first one—that
we should take seriously the ‘computational constraints’ confronting the sci-
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entists. Indeed, when it comes to extracting useful information from math-
ematical equations describing systems of interest, one often fails to notice
how significant is the difference between merely proving that a solution
exists and proving that a computational route to access it is available.
In addressing the issue of computability, it is essential to draw attention to

the important distortions to our understanding of the scientific enterprise
that result from identifying the epistemic subject with an ‘ideal agent’ pos-
sessing unlimited calculational resources. Even though this has only recently
become the focus of extensive work in philosophy, this epistemic dimension
has played a prominent role in the works of the founders of modern com-
putation theory, such as Turing: “the assumption that as soon as a fact is
presented to a mind all consequences of that fact spring into the mind si-
multaneously with it . . . is a very useful assumption under many circum-
stances, but one too easily forgets that it is false” ð1950, 451Þ. Since the
computational route to the solution can be easier or harder to navigate for
different types of mathematical problems, it is natural to organize more or
less tractable problems into a complexity hierarchy.
Our article articulates and compares different ways in which the com-

putational complexity hierarchy might be understood. We further emphasize
that we must also consider theoretical computational constraints, in addition
to the practical ones. As we will show, there are constraints that persist no
matter how much computational power is available and regardless of how
much the epistemic subjects are idealized. In other words, such constraints
are grounded in objective facts about what types of solutions may be ob-
tained for a given problem. To clarify the nature and consequences of such
limitations, it is important to understand the relations within the variety of
exact solutions ðalgebraic, elementary, closed form, analytic, etc.Þ and the
methods used to obtain and justify numerical solutions that are typically not
exact.

2. Exactly Solvable and Unsolvable Problems. After a mathematical model
is generated, the issues of interest come up when the scientist tries to ex-
tract useful information from it—or, in scientific parlance, when she tries to
‘solve’ the model. As is well known, it is only for very simple and dras-
tically simplified models that the equations can be solved exactly ði.e., that
an explicit formula can be obtained as a solutionÞ.1 The textbook example
is the simple perfect frictionless pendulum, with small amplitude of oscil-
lation. Its equation v

00 5 2ðg/LÞv admits such a solution, namely, vðtÞ5
vmaxsinðg=LtÞ1=2. For even slightly less idealized models, such as the simple
pendulum of arbitrary amplitude, the equation of motion v

00
5 2 ðg=LÞsinv

1. We will clarify what we mean by “solving the equation with an explicit formula” in
sec. 2, where types of exact solutions are distinguished.
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is not tractable in the same straightforward way. One should then use more
sophisticated mathematical machinery to explicitly express an exact solution
or instead appeal to numerical methods ðsuch as a Runge-Kutta algorithmÞ to
obtain ðhopefullyÞ approximate solutions. In other cases, only such inexact
numerical values for the solutions are obtainable by computation, which gives
rise to a different epistemic context. The distinction between the two epistemic
contexts can be amply illustrated. Here are several well-known scientific ex-
amples belonging to each category ðTrefethen 2008, 605Þ. Cases in which we
can find an explicit formula that solves the problem include solving systems
of n linear equations and n unknowns, minimizing n-variable linear functions
subject to m linear constraints, and so on. Cases in which no explicit solution
is available include finding eigenvalues of n� nmatrices, minimizing functions
of several variables, evaluating arbitrary integrals, solving ordinary and partial
differential equations, and so on.
It may seem natural to think that the scientist operating in contexts of

the second type finds herself in an epistemically disadvantaged position,
especially when compared to the circumstances in which explicit exact so-
lutions are available. In this way, this binary distinction—between mathe-
matical problems that afford exact, explicit solutions and those that do not—
gives rise to the belief that there is an epistemic hierarchization of the two
contexts. It is easy to see why one might presume that possessing exact, ex-
plicit expressions for solutions is preferable to not possessing them: we
seek these solutions because, presumably, they immediately reveal infor-
mation about the behavior of systems. Since inexact solutions might fail
to do so by not being genuinely informative ðwhen their error is too largeÞ,
exact solutions are deemed epistemologically superior. The central aim of
what follows is to challenge this belief and maintain instead that the dif-
ference is not as pronounced as one might think, since even when explicit
solutions are available, numerical considerations ðtypically associated with
inexact solutionsÞ cannot be avoided. We argue that the mere existence of
an explicit, exact solution does not necessarily improve one’s epistemic
position, as complications often occur. These complications require that
we adopt a perspective on the role of equations ðand their solutionsÞ ac-
cording to which this hierarchization is rather illusory. To this end, we first
turn to a closer examination of the two epistemic contexts.
To begin, it is important to understand some nuances about the notion of

an exact solution. There are many types of exact solutions to a mathematical
problem, affording different epistemic advantages. It is not uncommon to
see the phrases “exact solution,” “algebraic solution,” “analytic solution,”
and “closed-form solution” used interchangeably in the literature. Typically,
these phrases are used to characterize an epistemological context in which
exactness prevails ði.e., in which approximations are of no concernÞ. Yet
there are important differences between them. Among the phrases above,
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“exact” is the most general term that refers to any mathematical objects that
satisfies the conditions constitutive of the problem; the other terms denote
particular cases of exact solutions arranged as shown in figure 1.
Consider an arbitrary problem that happens to have a unique function as its

exact solution ðas is the case for “nice” initial-value problemsÞ. The problem
is said to have an algebraic solution if the solution can be written as a finite
combination of algebraic operations. So, the question whether there is an al-
gebraic solution depends on what is in the class of algebraic functions. Note
that the property “having an algebraic solution” depends on the existence of
an expression of a given type that captures the function that solves the
problem ðand not only on the existence of a solutionÞ. The same can be said
for elementary and closed-form solutions. The classes of admissible opera-
tions for expressions of the solution are as follows:

• Algebraic expressions admit the following operations: addition, sub-
traction, multiplication, division, and exponentiation with integral and
fractional exponents;

• Elementary expressions admit all elementary algebraic operations, plus
exponents and logarithms in general ðand so they include trigonometric
and inverse trigonometric functions as wellÞ;

• Closed-formexpressions includeall closed-formexpressions, plusmany
other “well-understood functions,” in particular the so-called special
functions ðbut not arbitrary limits or integralsÞ.2

From their mutual relations, we see that it might be the case that some
problems have a closed-form solution without having an elementary solu-
tion and that some problems have an elementary solution without having
an algebraic solution.
For example, consider a fourth-degree polynomial,

pðzÞ5 a0 1 a1z1 a2z
2 1 a3z

3 1 a4z
4; ð1Þ

and a fifth-degree polynomial,

qðzÞ5 b0 1 b1z1 b2z
2 1 b3z

3 1 b4z
4 1 b5z

5: ð2Þ
In the sixteenth century, Ferrari showed that there are explicit formulas giv-
ing the roots of equation ð1Þ in terms of radicals, while no such formulas

2. Borwein and Crandall ð2013Þ review seven different approaches to defining what the
class of closed-form solutions contains; importantly, those disagree on the extension of
the class. Moreover, as they report ðfrom WeissteinÞ, “an infinite sum would generally
not be considered closed form. However, the choice of what to call closed form and
what not to is rather arbitrary since a new ‘closed-form’ function could simply be de-
fined in terms of the infinite sum” (50). The idea is that, at a given stage of development
of mathematics, any function that is well understood is to be considered closed form.
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exist for the roots of equation ð2Þ ðas proved by Abel and Ruffini at the turn
of the nineteenth centuryÞ. Thus, one might think that finding the roots of p
is a different kind of task than that of finding the roots of q.
In technical terms, we say that whereas the quartic has an elementary so-

lution, the quintic does not. The Abel-Ruffini Impossibility Theorem shows
that fifth-degree polynomials generally have no algebraic solutions ði.e., they
have no solutions expressible with algebraic expressions, which include rad-
icalsÞ. That is of course not the same as saying that there is no solution, because
the existence of a solution is guaranteed by the Fundamental Theorem of Al-
gebra. Importantly, the Impossibility Theorem states that the solution cannot be
expressed using a form that is particularly convenient for the sake of calcu-
lations. Moreover, it does not only say that no such expression has been found
so far; rather, it says that no such expression will ever be found. Yet, there is an
exact solution, and it turns out to be closed form since it can be expressed in
terms of Jacobi elliptic functions ðas shown by Hermite in the mid-nineteenth
centuryÞ. So, we canwrite down an explicit formula for the roots, provided that
we use special functions in this expression ðand so it is not elementaryÞ.
This being said, a look at how such roots are obtained in practice today

reveals that solving equations ð1Þ and ð2Þ is not that different after all. If an
engineer wants to find the roots of either of these polynomials, she will use
a computer. But, while the computer cannot use an explicit ðelementaryÞ for-
mula in the case of q, it does not necessarily use one in the case of p—since it
might turn out that the use of such a formula slows down the actual com-
putation of the result or provides spurious roots due to numerical instability
ðwe return to this point laterÞ.3 Thus, in practice, the possession of an explicit
formula does not immediately translate into an epistemic advantage.
As we have indicated above with the example of the pendulum, some

simple physical systems do not have closed-form solutions. The perfect pen-

3. For instance, in virtually any numerical analysis text, one finds an argument ex-
plaining that computing roots of quadratics using the quadratic formula is ill advised,
for it may lead to what is known as ‘catastrophic cancellation’.

Figure 1.
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dulum with small angle of oscillation is described by a differential equation
that turns out not to have an elementary solution.4 However, it does have an
exact solution, in terms of Jacobi elliptic functions, which is closed form. Be
that as it may, instead of being satisfied with this exact nonelementary solu-
tion, physicists often approximate the problem by taking the limit v → 0.
Then, the model equation reduces to the simple harmonic oscillator that has
the simple elementary solution vðtÞ5 c1sinqt 1 c2cosqt, where q 5 v

0.
Interestingly, if we take a simple harmonic oscillator and then add a linear
factor to the model equation, we can again have a situation that has no
elementary solution. This is also easy to imagine in a physical setup. If you
consider a mass attached to a Hookean spring, the model equation would be
x00 5 2x ðsuppose the stiffness k is 1Þ, a simple harmonic oscillator. How-
ever, in real systems, stiffness is not constant. We can try to understand what
would happen if the stiffness increased linearly with time, so that x00 1 tx5 0.
It turns out that the solution of this model equation is the Airy function,
which cannot be expressed as an elementary function. Thus, small changes in
the physical circumstances can drastically alter the kind of solution afforded
by the model equations.5

When there is an exact solution, but no elementary solution, it is nec-
essary to rely in some way on infinite series representation of the solution to
evaluate it at some time. With respect to calculations, the difficulty with
infinite series representations is that we cannot sum an infinite number of
terms. It then seems that we can evaluate the solution to arbitrary accuracy
by using increasingly long ðbut finiteÞ truncated series. An interesting sit-
uation arises when we have a perfectly good analytic solution in the form
of a uniformly convergent Taylor series, which converges so slowly that it
ends up being of no practical use for computation. The Airy function men-
tioned above is a good example of this. Numerically, even if the series
converges for all x, it might be of little practical use, since the theoretical
uniform convergence might not translate to success in numerical contexts.
Thus, to the extent that we need concrete numerical values, calculability

is crucial. Calculability is conceptually most straightforward when we have
an expression that we can evaluate, and this obtains when we have finite
expressions capturing solutions ði.e., when we have algebraic or perhaps
elementary solutionsÞ. The requirement of exactness is insufficient to the
extent that it allows for solutions that cannot be expressed finitarily. How-
ever, as we discuss below, even finitarily representable solutions do not
guarantee that no problems will arise in actual calculation.

4. Another famous example of this situation is the global solution of the n-body problem
provided by Wang ð1990Þ. It is analytic but does not have a closed-form representation.

5. Another interesting perturbation of the equation leads to Duffing’s equation, which also
has a character that supports our argument.
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The upshot of this discussion is this: when only qualitative behavior is
of interest, exact solutions are not very important. But, when quantitative
information is required, exact solutions will in general not give us a straight-
forward recipe to obtain numbers. This recipe would be within reach, however,
if the exact solution could be captured by ðor given in the form of Þ an al-
gebraic or elementary expression. This is why, even when a problem is sus-
ceptible of receiving an exact solution, applied mathematicians often ap-
proximate the description of the system in order to derive model equations
that have a closed-form solution or, even better, elementary or algebraic so-
lutions. However, this implies that, for small changes in our description of
the system, the character of the solutions can change significantly. But, given
that mathematical modeling is an activity practiced in a context where
uncertainty is always present, this means that our emphasis on an exact so-
lution will not, in general, guarantee the computability of accurate numerical
results from explicit exact solutions. These considerations lead us to a more
flexible and inclusive way of dealing with the extraction of quantitative
information from mathematical representations inspired by the works of nu-
merical analysts, as well as to different ways of characterizing the hierarchy of
computational complexity.

3. Computational Cost and Numerical Stability. In order to characterize
alternative, complementary ways of understanding complexity hierarchies,
we distinguish among three forms of equivalence of mathematical problems.
We will call them mathematical equivalence, computational equivalence,
and numerical equivalence.6 To grasp the difference between the first two
notions of equivalence, consider the following expression, known as the
sample variance of a set of n values:

s2n 5
1

n2 1 o
n

i51

ðxi 2 �xÞ2; ð3Þ

where �x is, as usual, the arithmetic mean of the n values, �x5 1=nð Þon

i51xi.
Calculating the variance using expression ð3Þ involves passing through the
set of data twice ðfirst to compute �x, then to accumulate the sum of squaresÞ.
Another formula is sometimes considered as a replacement for equation ð3Þ:

s2n 5
1

n2 1

� �
o
n

i51

x2
i 2

1

n o
n

i51

xi

� �2� �
: ð4Þ

Formulas ð3Þ and ð4Þ are of course mathematically equivalent, since the
graphs of the two right-hand-side formulas are identical, as can be shown by

6. The distinction between mathematical and numerical equivalence is a standard one
in numerical analysis. See, e.g., Dahlquist and Bjorck ð1974, 48Þ.
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elementary manipulations. But expression ð4Þ seems to offer a computa-
tional advantage: to compute it, we pass through the data only once. We then
say that ð3Þ and ð4Þ are not computationally equivalent: ð4Þ is, from this per-
spective, preferable to ð3Þ.
Typically, such computational advantages are measured by counting the

number of arithmetic operations; in numerical contexts, this is known as the
“flop count,” where ‘flop’ stands for ‘floating-point operation’. Formula ð3Þ
necessitates n 2 1 additions and one division by n to compute �x, n sub-
tractions and n multiplications for the squaring, n 2 1 operations for the
sum of squares, and one division by n2 1, for a total of 4n operations. But,
as one can easily check, formula ð4Þ requires only 3n1 2 operations, so we
see that the computational cost of formula ð3Þ is larger than that of ð4Þ.
Therefore, although ð3Þ and ð4Þ are, strictly speaking, not computationally
equivalent, both computational costs are linear functions, so the difference
between the two is often of no practical importance, even for very large col-
lections of data, since modern computers can process gigaflops ð109 flopsÞ per
second.
Sometimes, however, the difference between computational costs is very

important indeed. What matters is the difference between orders of com-
putational cost. The two methods to compute the sample variance above had
a linear cost, which we denote by OðnÞ. But if we instead considered an
algorithm having a quadratic cost ðOðn2ÞÞ, a cubic cost ðOðn3ÞÞ, or more
generally a polynomial cost ðOðnkÞÞ or even an exponential cost ðOðcnÞÞ,
the difference would be more dramatic ðsee fig. 2Þ. Such considerations lead
to a second way of characterizing a hierarchy of complexity of mathemat-
ical problems.
Consider such a case, namely, the problem of finding the determinant of

a matrix A ∈ Rn�n, which arises very often in science. We consider two
methods. The first method—a recursive method known as Laplacian de-
terminant expansion by minors, the method taught in introductory linear
algebra—uses this formula to compute the determinant:

detðAÞ5 o
n

j51

ð21Þi1jaijMij; ð5Þ

where i is any row along which we expand, andMij is the determinant of the
ðn2 1Þ � ðn2 1Þmatrix obtained by crossing out row i and column j. This
sum requires a linear number of operations; that is, the cost is a function
ax 1 b, or simply OðnÞ. But this requires computing Mij, which is itself the
determinant of an ðn 2 1Þ � ðn 2 1Þ matrix, so that the summation for this
number will require Oðn 2 1Þ operations. Again, it will involve computing
the determinant of ðn 2 2Þ � ðn 2 2Þ matrices, which costs Oðn 2 2Þ
operations. So, including all the steps of the recursion, we have a cost of
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Oðn � ðn 2 1Þ . . . 2 � 1Þ 5 Oðn!Þ, and factorial cost is even larger than
exponential. Clearly, for even a small system, this method will be prohib-
itively computationally expansive. However, one could use a more af-
fordable strategy—Gaussian elimination—to transform the matrix A into
an upper-triangular matrix B. Note that the elementary transformations
involved in the transformation do not change the determinant, so that the
problem of finding detðAÞ and detðBÞ are mathematically equivalent. How-
ever, detðBÞ is simple to find: it is the product of the n diagonal entries. Thus,
since the reduction to a transformed matrix uses Oðn3Þ operations ðsee, e.g.,
Corless and Fillion 2013, chap. 4Þ, we have an algorithm using cubic cost.
This is hugely inferior to the cost of the Laplacian row expansion method.
For instance, for a small 12 � 12 matrix, the latter method requires about
1,700 flops, while the Laplacian expansion method requires about 500 mil-
lion flops. These are certainly not computationally equivalent.
As we have seen, mathematical equivalence regards the calculations as

abstract operations, while computational equivalence takes into account some
practical computational constraints. Yet the notion of numerical equivalence
goes even deeper into these constraints, and, in fact, this is the notion that
underlies modern approaches to scientific computing ðas opposed to Turing-

Figure 2. Logarithmic plot of different orders of computational cost.
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style computation and complexity theoryÞ. In fact, there is a computing
tradition grounded in numerical analysis that significantly differs from and
complements the computation theory that is more familiar to philosophers
of science ðsee, e.g., Blum 2004Þ. Below we emphasize key aspects of the
concept of numerical stability and how it leads to a different characterization
of computational complexity.
In numerical terms, computational limitations are often given by speci-

fying the number of digits available to represent numbers; this is made es-
sential by the fact that digital computers are unable to handle the infinite
number of decimals that a real or complex number may have. Thus, real and
complex numbers are replaced by finite “machine numbers.”7

For the purposes of a simple example, suppose that we work within the
confines of what is called ‘8-digit fixed-point arithmetic’. That is, we have
only 8 digits available to represent numbers, so numbers longer than 8 digits
get chopped, which gives rise to a round-off error. Under this constraint, let
us consider the following set of three values: x1 5 10,000, x2 5 10,001, and
x3 5 10,002. For these values, formula ð3Þ computes s23 5 1 1, and formula
ð4Þ computes s23 5 0. As is immediately evident, this discrepancy is due to
the fact that chopping discards the last digits in some cases. This shows
that, even if ð3Þ and ð4Þ are mathematically equivalent and almost compu-
tationally equivalent in the sense given above, they are not numerically
equivalent.
This situation raises interesting conceptual questions: What is the value

of s23 after all? We noted that in certain circumstances ða large amount of
dataÞ, two mathematically equivalent expressions are associated with dif-
ferent computational speeds—and in these circumstances ð4Þ is to be pre-
ferred to ð3Þ ðalthough, as we saw, the difference in practice is not very
significantÞ. In yet other circumstances ð8-digit arithmetic and data of a cer-
tain typeÞ, the numerical equivalence of the two expressions is lost, despite
their mathematical equivalence. Therefore, one must advance a principled
reason to select the ‘right’ expression when calculating concrete values.
What is this principle then?
Before answering the question, note that modern scientific computing

generally uses floating-point arithmetic and not fixed-point arithmetic as in
the example above.8 If we work in, say, a standard 16-digit floating-point

7. This has important consequences that cannot be neglected; indeed, in limited-
precision arithmetic, many field laws do not hold true, e.g., associativity of addition and
cancellation of multiplication. Thus, a computer arithmetic has a different algebraic
structure.

8. See, e.g., the first appendix and the first chapter of Corless and Fillion ð2013Þ. The
main advantage of floating-point numbers over fixed-point numbers is that they cover a
broader range of approximate real values.
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arithmetic, there are design standards that guarantee that basic operations
such as addition, subtraction, multiplication, division, square root, and so
on, are correctly rounded.9 In other words, for any basic real-valued oper-
ation *: R � R → R,10 it will be the case that

flðx * yÞ5 x * y1 D5 x * yð11 dÞ; ð6Þ
where D is a round-off error that is at most half the unit in the last place,11

and d is the equivalent relative error given by

d5
D

x * y
5

flðx * yÞ2 x * y

x * y
: ð7Þ

So, the calculated floating-point value of such basic operations will be
within 1 ± 1.1 � 10216 of the exact value. When multiple operations are
chained together, we obtain a cumulative round-off error in terms of the
individual round-off errors. If implementing a problem in floating point
using a certain algorithm ðor formulaÞ results in a relatively small cumu-
lative round-off error, then we say that the algorithm or formula is nu-
merically stable. So, the notion of numerical equivalence necessitates that
we consider sets of problems/functions and their relations, and not only a
single function written in mathematically equivalent forms.
Let us examine a simple problem that will exemplify how one chooses

between solutions obtained from numerically inequivalent problems. Its
careful analysis will point toward the general principle underlying the anal-
ysis of scientific computation. Suppose then that we are in the happy cir-
cumstance that we can solve the model equations of a physical process, and
we obtain an explicit solution f:12

f ðxÞ5 xð
ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
2

ffiffiffi
x

p Þ: ð8Þ
Suppose, further, that for some reason we are interested in calculating the
value f ð500Þ. If we had unlimited computational resources, such a value
would be given in the form of an infinite array of decimals. However, this

9. One such standard that is widespread in the software industry is the IEEE-754
standard.

10. The point generalizes to operations of arbitrary ðbut finiteÞ arity and to complex
numbers.

11. The unit in the last place, denoted ulp, is a constant determined by the parameters of
a system of floating-point arithmetic. In a standard 16-digit floating-point system using
a binary basis, it is about 1.1 � 10216. Another related quantity is also used, namely,
the “machine epsilon.”

12. Matthews and Fink ð1999, 28Þ use this example to illustrate loss of significant
figures, but we use it instead to make a more general point about numerical stability.
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value is simply not available to a finite epistemic agent computing it on a
finite physical machine. So, within the current context, the question is in fact
what is the value f ð500Þ, given certain computational constraints.We can call
the value supposedly obtainable by an ideal ðPlatonist, if you willÞ mathe-
matician the ‘true’ value, but we have to think about what the actual, com-
putable value is, under the given constraints. Suppose our constraint is that
we work in a 6-digit floating-point arithmetic in base 10. Then, the computed
value would be

f ð500Þ5 500ð
ffiffiffiffiffiffiffiffi
501

p
2

ffiffiffiffiffiffiffiffi
500

p
Þ5 500ð22:38302 22:3607Þ5 11:1500: ð9Þ

Let us introduce the notation JcðaÞ standing for the ‘computable’ value of J
at point a, subject to constraints C. Then, fcð500Þ 5 11.1500.
At this point, suppose we discover a different expression g,

gðxÞ5 xffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
1

ffiffiffi
x

p ; ð10Þ

which, as is immediately clear, is mathematically equivalent to f. In fact, we
may regard it as merely an accident that we first expressed the solution as a
computation of the expression for f. The solution could have been obtained
in the form g to begin with. We can put this in terms of epistemic symmetry:
imagine that Fred and Ginger solve the problem in parallel, perhaps in dif-
ferent rooms, and that Fred writes down the solution as f while Ginger
obtains it as g. Epistemically speaking, there seems to be perfect symmetry
between them. Yet, a simple calculation shows that when Ginger computes
gcð500Þ, she gets

gcð500Þ5 500ffiffiffiffiffiffiffiffi
501

p
1

ffiffiffiffiffiffiffiffi
500

p 5
500

22:38301 22:3607
5

500

44:7437
5 11:1748:

ð11Þ
The problem we face now is of the type introduced above: which of the two
values, 11.1500 or 11.1748, should we use ðe.g., to build a bridgeÞ?
Recall the aim we stated at the outset: to raise a challenge to the belief that

it is preferable to have an analytic solution available because, allegedly, in
this case we do not need to appeal to error-theoretic considerations. We just
made such an assumption, that we are in the happy circumstance of being
able to know one exact expression for the solution of the differential
equation of interest: f. The point of this example is to show that this was not
good enough. When it came to actually calculating values at points of
interest, we noticed that this expression of the solution can be questioned.
The lesson is that the supposedly superior epistemic situation of possessing
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an exact explicit solution is in fact on many occasions more precarious—
and it is exactly considerations of numerical nature that show this.
This example can be generalized. Suppose, again, that function f is the

solution to our model. We also want the physical information encoded in
this function; that is, we would like to know the values of this function at
various points t. As limited epistemic agents, we are always under certain
computational limitations C, so we have to calculate fcðtÞ. The problem in
its most general form is that we are not immediately justified to work with
this value, since other values exist—and, therefore, we need a principled
way to choose among them. We know that other values exist since there are
other functions mathematically equivalent to f, and, what is even more
disconcerting, we can produce them at will, by simple manipulations of one
of them.
The general nature of the difficulty is then clear: given a solution f, we can

specify an infinite class of functions gk such that the following conditions
obtain:

1. for all k, gk is mathematically equivalent to f;
2. it is possible that at least one of them, call it gi, will be computa-

tionally inequivalent to f;
3. it is possible that at least one of them, call it gi, is such that

gicðtÞ ≠ fcðtÞ.13

Thus, if we construct a complexity hierarchy based on the notion of nu-
merical stability, it will differ in important respects from the two hierarchies
mentioned earlier. We want to use a computed solution from an expression
that is as computationally simple as possible while being numerically sta-
ble.
If we return to the alternative expressions of equations ð8Þ and ð10Þ, we

use the method of equation ð6Þ to determine whether the expression is
numerically stable. If we write the floating-point implementation of ð8Þ and
want to find an equivalent real function with error terms, we get

fCðxÞ5 flðxð
ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
2

ffiffiffi
x

p ÞÞ5 x � flð
ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
2

ffiffiffi
x

p Þ � ð11 d1Þ
5 xð flð

ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
Þ2 flð ffiffiffi

x
p ÞÞð11 d2Þð11 d1Þ

5 xð
ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
ð11 d3Þ2

ffiffiffi
x

p ð11 d4ÞÞð11 d2Þð11 d1Þ:
ð12Þ

13. With a characterization of approximate solutions in terms of solutions of nearby
problems, as found, e.g., in Fillion and Corless ð2014Þ, we could even say in addition
that gicðtÞ≉fcðtÞ.
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We thus see that the worst case scenario is

fCðxÞ5 f ðxÞð11 dÞ3; ð13Þ
where d is the maximum relative rounding error dictated by the size of the
unit in the last place for this system of floating-point arithmetic ðin this case,
with 6 digits and a5 500, this is about d5 2024Þ. What about g? We have

gCðxÞ5 f l
xffiffiffiffiffiffiffiffiffiffiffi

x1 1
p

1
ffiffiffi
x

p
� �

5
x

flð ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p
1

ffiffiffi
x

p Þ ð11 d1Þ

5
x

ð ffiffiffiffiffiffiffiffiffiffiffi
x1 1

p ð11 d2Þ1
ffiffiffi
x

p ð11 d3ÞÞð11 d4Þ
ð11 d1Þ:

ð14Þ

Here, the worst case scenario is

gCðaÞ5 gðaÞð11 dÞ; ð15Þ
which is much more robust to round-off errors of maximum magnitudes d.
Thus, we can conclude that, once implemented in floating-point arithmetic,
g solves a very near problem, but f does so to a lesser extent. But, as we have
noted, many other candidate functions could come up against g; would it
undermine our confidence that g gave us a reliable answer? No, since the
error factor for g is of order ð11 dÞ, so that no other candidate could have an
error factor of lower order.
As we see, the argument is quite general and does not depend on the

specifics of a particular system of floating-point arithmetic. In fact, the val-
ues d could be equally well thought of as physical perturbations or mea-
surement errors, instead of round-off errors. This is why the expression gwill
be more information conducive than f, both in a numerical and in a physical
sense. As a result, we conclude that, even if Fred and Ginger started from
epistemically symmetric contexts, their results have asymmetric values. In
other words, we see that the epistemic symmetry in the mathematical context
does not carry over to the numerical context.

4. Conclusion. When we do not have an exact solution to a mathematical
problem, we see that it is important to consider various forms of stability,
to determine the similarity between modified problems, and to determine
the robustness of our original reference problem to perturbations. By such
forms of analysis, we establish that inexact solutions are entirely satisfac-
tory ðor not, as the case may beÞ, given a certain modeling context. More
precisely, we seek to show that the computational error engendered by a
numerical method is small in comparison to the systemic modeling error
that we know to be present for physical reasons. But even for exact solu-
tions, the robustness or sensitivity to such factors has to be established. As a
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result, the alleged superiority of exact solutions ismitigated, provided that one
is interested in scientific modeling. This fact has important consequences for
the way that the hierarchy of complexity of mathematical problems should
be conceived, as it incorporates a relationship with nearby problems in terms
of both computational complexity and numerical stability.
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