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Abstract Interest in the computational aspects of modeling has been steadily growing
in philosophy of science. This paper aims to advance the discussion by articulating
the way in which modeling and computational errors are related and by explaining
the significance of error management strategies for the rational reconstruction of sci-
entific practice. To this end, we first characterize the role and nature of modeling
error in relation to a recipe for model construction known as Euler’s recipe. We then
describe a general model that allows us to assess the quality of numerical solutions in
terms of measures of computational errors that are completely interpretable in terms
of modeling error. Finally, we emphasize that this type of error analysis involves
forms of perturbation analysis that go beyond the basic model-theoretical and sta-
tistical/probabilistic tools typically used to characterize the scientific method; this
demands that we revise and complement our reconstructive toolbox in a way that can
affect our normative image of science.
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1 Introduction

One of the preeminent problems in the philosophical tradition concerns the nature of
genuine knowledge, as opposed to mere opinion or belief. To that effect, epistemology
endeavors to specify which propositions among the ones we believe can commend-
ably be deemed knowledge. In the first known writing dedicated to this question, the
Theaetetus, Plato suggests that the problem be tackled by supplying conditions that
beliefs and opinions have to satisfy in order to count as genuine claims to knowl-
edge, such as being based on perception, being true, having a justification, etc. The
suggestion that beliefs need justification has been found to be compelling since cases
in which one is right by accident have to be excluded; yet, precisely characterizing
what an adequate justification for a belief is has proved to be elusive, even for beliefs
agreeing with our best science.

In fact, scientific practice is pervaded with falsehoods, errors (intended and not
intended), approximations, and uncertainty (including both known and unknown
unknowns). Cases of epistemic serendipity, fortunate mistakes, aesthetic preferences,
and personal idiosyncrasies of influential figures are also integral parts of real science.
However, not all of those factors play an equally important role in epistemology. It is
true that epistemology is descriptive insofar as it has “the task of giving a description
of knowledge as it really is” (Reichenbach 1938). However, the point of epistemology
is to clarify what knowledge in general, and scientific knowledge in particular, is, to
explain its reliability, and to answer questions concerning its scope and limits. Epis-
temology aims to provide grounds for evaluating what knowledge claims are in fact
genuine knowledge; in particular, which claims, hypotheses, models, theories, meth-
ods should be considered scientifically warranted. Epistemology does not, as a result,
take as its objects the actual thought processes of scientists, the actual words used by
scientists, or even what scientists take their own activity to be, but rather the rationally
compelling presentations they ought to have. Thus, to use the term introduced by Car-
nap (1928), the object of the epistemology of science is a rational reconstruction of
science.

The dimension of the rational reconstruction practice that generates an object of
study suitable for a properly epistemological analysis of knowledge is often presented
as an invective to distinguish the context of discovery from the context of justifica-
tion. Here, discovery and justification should not be thought of as two temporally
distinct processes—first, you discover something and then later you justify it—since
the typical development of science involves alternating phases of discovery and justi-
fication that inform one another. There might be overlap between the two contexts, as
emphasized by Salmon (1970). The distinction between the contexts is one between
processes of discovery versus methods of justifications. The phrase “methods of justi-
fication” denotes what satisfactorily establishes knowledge claims, independently of
what scientists actually claim.

Clearly, what is to be included in the context of justification is determined by what
methods and tools are considered rational; different choices might result in different
organizations of what belongs to what context. It is important to emphasize that which
methods of justification are rationally admissible is not god-given; there is room for
disagreement about justification, which may be discussed philosophically. Moreover,
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if we use reconstructive tools that are misguided or insufficiently far-reaching, our
assessment of important aspects of science can turn out to be wrong. The role of
philosophy of science as a branch of epistemology, from this point of view, is to
determine by philosophical analysis what should count as satisfactorily establishing
knowledge claims, that is, what counts as a rational method of justification in science.

This is the most fundamental level at which formal epistemology and philosophy
of science interact. Formal epistemology develops formal methods that assist us in
elucidating aspects of scientific knowledge. As such, formal epistemology might be
regarded as providing the instruments that fill out our “reconstructive toolbox.” Indeed,
many such formal tools have either been designed to account for aspects of scientific
methodology, or have done so post hoc. Examples include mathematical theories of
formal inferences in logic, modal analyses of epistemic attitudes, Bayesian accounts
of probabilities in terms of beliefs, logical theories of belief revision, counterfactual
accounts of scientific laws, models of computation and the corresponding characteri-
zations of computational complexity, formal-learning-theoretic accounts of inductive
processes, and more recently agent-based models of scientific organizations. Such
applications of the methods of formal epistemology have contributed significantly
to our understanding of many aspects of science, such as the structure of theories,
confirmation, explanation, theory choice, etc.

There is, however, another crucial aspect of science that has not been dealt with
in this manner so far, or only marginally so. The main contribution of applied math-
ematicians to experimental and theoretical sciences consists in constructing mathe-
matical representations of real physical systems in contexts that essentially involve
uncertainty, measurement error, modelling error, analytical approximations, and other
forms of guesses and ignorance. Despite the prima facie epistemologically suspicious
character of the ingredients, the model construction recipes often provide extremely
accurate representations of systems. On the basis of the commonsensical rule “garbage
in, garbage out,” the accuracy of the resulting representations appears to be uncanny.
And yet, it surely is the case that the success of the methods of applied mathematicians
is not entirely accidental. Thus, there is an epistemological story to tell about the rela-
tion between all the kinds of errors that contribute to the construction of mathematical
representations and their intrinsic accuracy. In addition to the epistemic and semantic
deficiencies in the representational assumptions, there are intrinsic limitations regard-
ing what can be mathematically achieved. As a result one must resort to computer
simulations and numerical approximations that introduce an additional dimension to
the problem.

In order to formulate proposals aiming to supplement the formal methods already
in our reconstructive toolbox to determine the sense and the circumstances in which
such applied mathematical recipes are justified, it is necessary to tackle the prelimi-
nary problem of characterizing the main strategies of management of modeling and
computational error at a sufficient level of generality. To put it more pointedly, it is
necessary to have an account of what has to be reconstructed in order to discuss how
to reconstruct it. This paper aims to provide an answer to this preliminary question by
drawing attention to elements that philosophical discussion often sweep under the rug.
It is true that philosophers have already written on the epistemological and semanti-
cal aspects of modeling error from many different perspectives, and there has been
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a steadily growing interest in philosophy of science about the computational aspects
of modeling (e.g., Barberousse et al. 2009; Kelly 1996; Hartmann 1996; Humphreys
2004, 2009; Morrison 2009; Parker 2010; Thagard 1993; Winsberg 2009). However,
in the latter case, much less has been said about the numerical methods on which
the simulations are based and the error theory used to justify them (a noteworthy
exception is Wilson 2006). Moreover, philosophers of science have by-and-large not
yet acknowledged the conceptual connections between the methods of error analysis
arising in modeling contexts and in computational contexts.

Be that as it may, it is crucial to understand the relation between modeling and
computational error and the accuracy of mathematical representations to have a proper
philosophical understanding of the logic of model construction and model assessment.
We will articulate this relation from the point of view of the branch of mathematics
known as numerical analysis. In Sect. 1, we explain the circumstances that make
modeling and computational error intrinsic parts of applied mathematics. In Sect.
2, we provide a classification of the types of error encountered in the context of
mathematical modeling and identify at which steps of the construction of a model
each type of error occurs. Finally, in Sect. 3, we explain what the relation between
modeling and computational error is by explaining how computational error can be
interpreted in terms of modeling error. This will lead us to draw conclusions on the
type of reconstructive concepts that are required to capture the rational justification
of the effective modeling strategies that prove to be so successful in the mathematical
sciences.

2 Exact and inexact solutions of models

The construction of a mathematical model is a process that seeks to capture the essen-
tial synchronic or diachronic features of a system by deriving equations from model-
ing assumptions.1 However, in order to make predictions or to explain phenomena by
means of model equations, it is crucial to find their static or dynamical solutions, as the
case may be. The process of solving model equations typically involves mathematical
operations such as evaluating functions, finding zeros of functions, solving systems
of equations, solving difference or differential or integral equations, etc. Different
branches of mathematics develop different methods to find solutions of such problems;
here, we will focus on numerical analysis. Numerical analysis is a branch of mathe-
matics that develops, studies, and compares efficient numerical methods designed to
find numerical approximations to the solution of mathematical problems arising in
applications, while quantifying the magnitude of the computational error and quali-
fying the possible resulting misrepresentation of the system (Fillion 2011). The first
question to address to understand the role of numerical analysis in science is: why

1 Charactering what the essential features of a system are is a delicate problem, and many proposals of very
different natures have been made in order to address this intricate question. For the purpose of this paper, it
suffices to think of them as contextually determined traits that are relevant to understanding the behavior of
interest. Apart from the conceptual and logical approaches to relevance, one can understand this in terms of
mathematical methods such as asymptotic analysis. For this latter approach in the philosophical literature,
see, e.g., Batterman (2002a,b), Fillion (2012) and Pincock (2012).
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would a discipline devote so much effort to approximate solutions, instead of devel-
oping new methods to find exact solutions? After all, is it not the case that exact
solutions (often called “analytic”) provide us with the best mathematical answers to
our problems? It is important to address this question, since knowing why we have to
talk about approximations will suggest how we should talk about them.

We suggest that there are four reasons. The first reason is a pragmatic one, namely,
the exigencies of scientific practice:

The applications of mathematics are everywhere, not just in the traditional sci-
ences of physics and chemistry, but in biology, medicine, agriculture and many
more areas. Traditionally, mathematicians tried to give an exact solution to scien-
tific problems or, where this was impossible, to give exact solutions to modified
or simplified problems. With the birth of the computer age, the emphasis started
to shift towards trying to build exact models but resorting to numerical approx-
imations. (Butcher 2008)

Thus, there are pressing demands from scientists to reliably simulate complex systems
with many parameters, which are typically remarkably hard to solve analytically. The
second reason is also pragmatic: even if the equations we obtain from our models are
exactly formulated, there is always an appeal to experimental data; in this respect,
there is a practical necessity to resort to modification, uniformization, compression,
and simplification of the data. In addition, since there is always a certain degree of
uncertainty in measurements, an understanding of the effects of approximations on
the solutions of models is already required.

The third reason is brought about by theoretical necessity. More specifically, mathe-
maticians have produced many impossibility theorems, i.e., they have shown that some
types of problems are not solvable, so that there is no computational route that leads
to the exact solution. For instance, Abel showed that it is not possible to solve general
polynomial equations of degree five or more in radicals (although there is a less-well-
known algorithm using elliptic functions for the quintic itself). Liouville showed that
many important integrals could not be expressed in terms of elementary functions
(and provided a basic theory to decide just when this could in fact be done). Turing
has shown that some number-theoretic problems cannot be finitarily decided. With
this sort of theoretical limitation in mind, Trefethen (1992) claims that the numerical
analysts’ “central mission is to compute quantities that are typically uncomputable,
from an analytic point of view, and to do it with lightning speed.”

Finally, the fourth reason is that it is important to look for approximate solutions
because exact solutions might be of little value. A typical example of this happens
when analytic solutions do not have closed form representations. A famous exam-
ple of this situation is the global solution of the n-body problem provided by Wang
(1990). Another example—we will revisit it in Sect. 4—is the Airy function. In addi-
tion, it also happens that even short finite closed form solutions may be of little
value.

In such cases, we have to resort to approximation in order to use our mathematical
models to predict and explain phenomena. Accordingly, the central problem of numer-
ical analysis is an epistemological one: when one cannot know the true solution of a
mathematical problem, how should one determine how close to the true solution the
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(presumably) approximate solution is? The similarity with other traditional questions
about the adequacy of our knowledge with reality is striking.2

Now, given that both the nature of mathematics in itself and the role of mathe-
matics in science require a perspective on and a theory of numerical approximation,
how should we talk about computational error? The guiding principle is that numer-
ical methods should be discussed as part of a more general practice of mathematical
modeling as found in applied mathematics and engineering. Once mostly absent from
texts on numerical methods, this desideratum has become an integral part of much of
the active research in various fields of numerical analysis. This being said, in order to
articulate more precisely what is meant by the claim that “we should evaluate numeri-
cal methods in their modeling context,” we need to explain the way in which measures
of computational error can be directly interpreted in terms of modeling error. To do
so, we discuss the concept of modeling error in more detail in the next section. On this
basis, we will then present a formal framework to characterize the relation between
computational and modeling error, and the accuracy of mathematical representations.

3 Modeling and computational error

In order to delineate the concept of modeling error, we first distinguish between theory
and model, based on another distinction between two kinds of statements:

1. general principles, often referred to as field equations or conservation laws;
2. constitutive equations, sometimes referred to as specializing relations.

The most important property of the general principles is that they are common to
all media. As is customary in the physics literature, we use the term ‘medium’ to
refer to any material, whether real or ideal. Thus, general principles are genuinely
universal claims. They determine the general mathematical structure that is used to
describe motion, deformation, flow, etc. They are sometimes called “field equations
of balance,” but they are best known as conservation laws. For example, the axioms of
continuum mechanics usually state six conservation principles: conservation of mass,
linear momentum, moment of momentum, energy, electric charge, and magnetic flux.
Taken together, with a model of space–time, they form the mathematical structure that
applies universally to all bodies in any circumstance,3 and they are the proper subject
of the branch of mathematics known as kinematics. We will refer to this level as the
level of theory.

Theories are at the level of general principles; they do not by themselves account for
phenomena. To account for phenomena, we need to construct models. In other words,
the general principles, in themselves, are not sufficient to determine the evolution (i.e.,
motion, deformation, etc.) of bodies in a system. As a result, a theory, understood as the

2 One such very similar traditional question results from a sceptical worry that lies at the very core of
epistemology. In somewhat Kantian terms, it can be formulated as follows: given that the noumenal truths
are not accessible, how should one determine the status of such knowledge-claims?
3 A remark is in order. The mathematical structure is universal in the sense that it is treated as if it were.
No particular constraints on its application is suggested by the theory. However, this is strictly true only
insofar as we are dealing with classical (non-quantum) systems, in non-general relativistic space–time.
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logical closure of a collection of universal laws, has no observational consequences.4

In order to formulate a determinate dynamical problem, it is required to specify body
forces (e.g., universal gravitation, Coulomb’s law, etc.) and the kind of material to
which the general principles and the body forces apply. The specification of a material
(or of many different materials) is made by means of constitutive equations. Despite
the fact that these equations are often labeled “laws,” it must be emphasized that the
name is somewhat inappropriate, because they cannot be universal laws of nature,
or even theoretical principles, since they contradict one another.5 Rather, they define
ideal materials, and serve as modeling assumptions.

In order to provide a concrete idea of the entire list of ingredients required to obtain
a model describing the behaviour of bodies in physical systems through time, we refer
to Euler’s recipe6:

(a) Delineate a class of bodies to be studied.
(b) Determine what specific forces act between these bodies, i.e., what special force

laws hold between them.
(c) Choose Cartesian coordinates and decompose each of the specific forces along

the axes of this coordinate system.
(d) For each body, and for each axis, sum the component forces acting upon this body

in the direction of the axis.
(e) Set this sum of forces equal to m d2x

dt2 (Newton’s Second Law).
(f) Solve the differential equation, i.e., find x(t).

We will shortly return to this recipe to identify the sources of errors arising in modeling.
However, we must first classify the types of error arising in model construction7:

systemic error
experimental error

}
modeling error

truncation & discretization error
roundoff error

}
computational error

On the one hand, modeling error includes what philosophers of science have called
omission, simplification, distortion, idealization, and abstraction. They thus include
things such as neglecting air resistance on a projectile, neglecting the gravitational
influence of distant stars and not-so-distant celestial bodies, assuming the constancy
of parameters that are not constant (e.g., the stiffness of a spring), and treating elastic
bodies as being rigid (e.g., a billiard ball collision). But it also includes experimental

4 This point is elucidated by Smith (2001, 2002) and Earman et al. (2002). See also Putnam (1991) and
Stein (1995) for an illuminating discussion of this fact.
5 The sense in which they contradict each other is that they cannot simultaneously apply to the same body,
as they can characterize its dynamical properties in mutually exclusive ways.
6 We draw this description of the recipe from Wilson (1998) and Smith (2002).
7 This classification is an adaptation from Neumann and Goldstine (1947). As always, the difference
between error and uncertainty should be borne in mind. An error is simply the difference between a value
and the true value, whereas an uncertainty is an interval within which the true value is believed to lie. For
more precise definitions, see, e.g., Taylor and Kuyatt (1994) and Joint Committee (2008).
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Fig. 1 Floating-point numbers

errors of various kinds. On the other hand, computational errors are essentially of three
types. Firstly, truncation error consists in replacing functions, integrals, differential
vector fields, etc., by truncated asymptotic series. Such truncated expressions are
computationally important, since we often have no closed form solutions, and it is
impossible to add an infinite number of terms in series. Secondly, discretization error
consists in replacing continuous flows of the form ẋ = f(t, x(t);μ) by discrete maps of
the form xk+1 = �(tk, xk, . . . , x0, h, f). This substitution is the basis for most methods
of numerical differentiation and integration.8 Finally, we typically don’t compute the
value of functions using field arithmetic (e.g., the familiar arithmetic of real numbers),
since computers cannot handle such entities. Thus, it is replaced with a finite computer
arithmetic known as floating-point arithmetic (see Fig. 1).9All of these computational
approximations are made because we can only execute finite, discrete operations.
Computational error typically arises in steps (c), (d), and (f) of Euler’s recipe.

Now, let us return to Euler’s recipe in order to identify the potential sources of
modeling error and their nature. The first step includes the specification of the number
and types of bodies (i.e., mass-point particles, rigid bodies, continuously deformable
bodies) that are part of the system. Two kinds of modeling error can be introduced
here: we can neglect the presence of some bodies altogether, and we can assume that
some bodies are simpler than they in fact are (e.g., assuming that a body is rigid, that
it is a point particle, or that a fluid is inviscid). It also includes the specification of
a number of parameters, such as the kinematical constants (e.g., mass, charge, shear
stress, etc.) and the initial values of state variables. The former introduce systemic
error and the latter introduce experimental error.

The second step involves a decision about which body-force laws will apply between
bodies. For example, one can often suppose that gravitational effects or electromag-
netic effects can be neglected. Moreover, this step involves the choice of constitutive
equations, as well as the values of the phenomenological parameters they contain. A
simple example would be the choice of Hooke’s law F = −kx for a spring; there is
a source of error in the choice of the parameter k, but also in the fact that springs are
not exactly Hookean, since their stiffness is non-constant. At this stage again, we find

8 They are thus key for dynamical simulations.
9 For more details concerning floating-point number systems, see for example Corless and Fillion (2014,
Appendix 1).
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both systemic and experimental error. Accordingly, it is steps (a) and (b) of the model
construction procedure that we should focus on to understand modeling error.

Note that, to decide whether a model so constructed accounts for some set of phe-
nomena, the step (e) → (f) has to be efficiently computed, whether exactly or not.
In other words, without efficient computation, one cannot decide whether the model
accounts for the phenomena, i.e., one cannot determine what the observational con-
sequences are. Moreover, it should be emphasized that, as a result of this requirement
of efficient computability, most situations involve a choice between further idealiz-
ing the assumptions contributing to the construction of the model and being able to
solve the equations exactly, or having less idealized modeling assumptions and being
forced to use computational methods that contain an error component.10 This is why
the computational aspects of science cannot be altogether ignored, if one wishes to
adequately reconstruct the confirmational and explanatory aspects of science.

These considerations should provide a sufficient clarification of our guiding prin-
ciple: the role of mathematics in science prescribes that computational errors should
be analyzable in the same terms as modeling and experimental errors. By that we
mean that if truncation, discretization, and roundoff errors are small compared to the
modeling and experimental error, then for all we know, our approximate numerical
answer can be the right one.

4 Problems and methods in error analysis

In this section, we describe a formal model that will allow us to identify the key
problems and methods of error analysis. On this basis, we will explain how compu-
tational error can be physically interpreted. It is important to recognize the generality
of the method. The analysis extends to many problems in science and engineering,
e.g., function evaluation, polynomial equations, series algebra, root finding, numerical
linear algebra, numerical quadrature, numerical differentiation, numerical solutions
of ordinary differential equations, partial differential equations and many others.

To begin with, we represent a mathematical problem by an operator ϕ, that has
an input (data) space I as its domain and an output (result, solution) space O as its
codomain:

ϕ : I → O.

Since ϕ is the problem we are interested with in the first place, we call it the reference
problem. In many cases, however, we do not have a way to determine the exact solution
y to the problem ϕ at our disposal; this happens in the cases described in Sect. 1. In
this very typical case, one can construct a modified problem (using discretization,
truncation, and roundoff) for which we can find an exact solution in an efficient way.
Accordingly, we introduce the notion of an engineered problem ϕ̂ (which is by design
computable). For some �y, we obtain this commutative diagram:

10 This point is articulated more thoroughly by Batterman (2002a). See also Wilson (2006), Pincock (2012,
Chap. 11) and Fillion (2012). The point is particularly important to understand the virtues of models at
different scales.
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(1)

The �y is called the forward error, and is defined by �y = ŷ − y = ϕ̂(x) − ϕ(x).
When this is defined, dividing by y gives the relative forward error, denoted δy. It
represents the difference between the exact and the approximate solution. Accordingly,
we can write both ŷ ≈ ϕ(x) or ŷ = ϕ̂(x). In this way, instead of saying that ŷ
is the approximate solution to ϕ, we can say that it is the exact solution to ϕ̂. This
allows us to emphasize that, instead of focusing on approximate truth, we focus on
modified problems; then the investigation is turned into one of characterizing nearness
of problems. Moreover, modified problems can be thought of as resulting from model
equations derived from slightly modified modeling assumptions.11

Replacing the reference problem with an engineered problem can lead to surpris-
ingly large forward error. In fact, it is surprising to many that this happens in very
simple physical setups. A simple example arises from setups described by a simple
homogeneous second-order linear differential equation, say ẍ − 20,000ẋ + x = 0,
which could represent an oscillating mass attached to a Hookean spring immersed in
a thick fluid occasioning large damping (here, 20,000 would be the damping coeffi-
cient). Then a solution to this differential equation will have the form x(t) = ceλt ,
where λ is a root of the quadratic equation ξ2 − 20,000ξ + 1 = 0 and c is some con-
stant. If we use the quadratic formula to find the roots on a calculator with standard
precision, we find that one of the root returned is 0. However, it is not hard to figure
out that the true value is 5 × 10−5. The difference is small (in absolute terms), and
yet if we consider the difference between ce0t and ce5×10−5t for large values of t , it
can have major repercussions, as we see in Fig. 2. From this we can infer that the
problem in question is sensitive to perturbations, since a small variation in the value
of the eigenvalue λ can provoke a bifurcation.

This example, however, is not conceptually of much interest, since it is relatively
easy to find the exact answer and use it as benchmark. But it is not so for many common
problems arising in practice. For example, consider the undamped motion of a weight
attached to a spring that becomes linearly stiffer with time (see Fig. 3a). It is described
by the differential equation x ′′(t) + t x(t) = 0. A solution to this equation is Ai(−t),
where Ai is the (first) Airy function:

Ai(x) = 1

π

∞∫
0

cos

(
1

3
t3 + xt

)
dt

11 This approach is also central to the so-called method of modified equations (see, e.g., Corless 1994;
Corless and Fillion 2014) and, in fluid mechanics, to the so-called method of manufactured equations (see,
e.g., Roache 2001; Oberkampf et al. 2004).
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Fig. 2 Important qualitative
difference resulting from a small
change in an eigenvalue
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Fig. 3 A simple physical setup represented by the Airy function
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where 	 is the Gamma function (see Bender and Orszag 1978). Note that, even if,
theoretically, the series converges for all x , it is of almost no practical use. If we use
a standard Taylor series computation in standard floating-point arithmetic to com-
pute f (−12.82), near the tenth zero, the absolute error grows very fast as x increases
negatively (see Fig. 3b). Even though the series converges uniformly, the floating-
point computation diverges.12 The same loss of convergence would arise for other
finite precision arithmetics, or for computations involving data containing some inac-
curacies. This limitation mirrors that of systems of significance arithmetic13 used to
mathematically analyze experimental data.

12 Notice that increasing the floating-point precision will not stop that from happening. Is this really a
catastrophe? From the modeling point of view, no. The difficulty stems from radical scale changes, and in
this context, it makes sense to consider scale as a fundamental factor in our search for solutions.
13 A significance arithmetic is simply a system of calculation rules that takes into consideration the number
of significant digits of the operands.
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Fig. 4 Backward error analysis:
The general picture

Knowing that the forward error has a certain size, however, is not informative
enough. Having a forward error as small as possible is a desideratum, but there remains
the question of determining acceptance criteria: when is the forward error small
enough to satisfy our modeling needs? This is why, in applications, it is also important
to consider errors in x , the input data of the reference problem ϕ. This error can have
many different sources, e.g., error in preparation of the system, measurement of the
data and perturbations of the system. We thus define a quantity �x = x̂ − x that
corresponds to the size of a modification of x . The smallest such �x that makes the
diagram

commute is called the backward error. As we can see in Fig. 4, we factor the map ϕ̂

through x̂ instead of through y (as was done in equation 1). This is advantageous since
in general we can exactly find or closely estimate �x , even though we may have no
direct information concerning the value of �y.

Switching our focus from forward error to backward error gives rise to a very
general and powerful method called backward error analysis.14 The objective here is
to explain the error in the computed solution ŷ in terms of errors in the input x . In
other words, we ask: how much error in the input would be required to explain all
output error? Formally, this happens when the diagram in Fig. 4 commutes. Thanks
to this change of perspective, the central question is now: When we modified the
reference problem ϕ to get the engineered problem ϕ̂, for what set of data have we
actually solved the problem ϕ? If solving the problem ϕ̂(x) amounts to having solved
the problem ϕ(x + �x) for a �x smaller than the modeling error, then our solution ŷ
can be considered completely satisfactory.

14 For a historical account of backward error analysis, see Wilkinson (1971). For a recent exposition and
application of this method, see Corless and Fillion (2014), whose afterword contains a brief discussion of
potential limitations.
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Fig. 5 A vector field with a
nearly tangent computed
solution

On the basis of the presentation of Sect. 2, this approach can be put in an even
more suggestive way: if the computational error accumulated in the steps (c), (d), and
(f) of Euler’s recipe corresponds to a backward error smaller than the modeling error
accumulated in the steps (a) and (b) of Euler’s recipe, then our computed solution is
as satisfactory as the modeling context can demand (no matter how large the forward
error is). In such a case, we have successfully extracted the observational consequences
from our model and we can use those numerical values to compare with observable
phenomena.

The success of this formal model to analyze computational error in terms of mod-
eling error is perhaps best illustrated with the case of initial-value problems. The
standard form of an initial value problem is

ẋ(t) = f(t, x(t)), x(t0) = x0, (2)

where x(t) : R → C
n is the vector-solution as a function of time, x0 ∈ C

n is the initial
condition, and f : R × C

n → C
n is the function equal to ẋ. For dynamical systems,

f is a velocity vector field (or slope field, or flow) and x is a curve in phase space
that is tangent to the vector field at every point (see Fig. 5). Typically, the solution
of this problem will not be directly computable. In this situation, we then resort to
some numerical procedure to solve the differential equation. In accord with the formal
model proposed, let x̂(t) be the solution of an engineered problem (say, the map
computed by a numerical scheme known as the Runge–Kutta–Fehlberg method) that
we would denote ϕ̂ here.15 The backward error turns out to be given by the expression
�(t) = ˙̂x(t) − f(t, x̂(t)). As a result, we can express the original problem in terms of
a modified, or perturbed problem, so that our computed solution is an exact solution

15 It is important for the purpose of applying backward error analysis to numerical solutions of ordinary
differential equations that we consider numerical solutions to be C 1, i.e., continuously differentiable;
otherwise, the backward error would not be globally defined on the interval of integration (see, e.g., Corless
and Fillion 2014, part 4).

123



1464 Synthese (2014) 191:1451–1467

to this modified problem16:

z = f(t, z) + �(t).

From the point of view of dynamical systems, the backward error measures how far
from satisfying the differential equation our computed trajectory x̂(t) is, i.e., how close
it is to being tangent to the vector field. In Fig. 5, we see a trajectory that is nearly tangent
to the vector field. In an even more suggestive way, we can say that the backward error
allows us to find to which perturbed vector field our computed solution is tangent.
Thus, as �(t) is a small inhomogenous quantity, we can think of it as a modeling
error, say a wind blowing on the system, or a small gravitational attraction from a
distant body, or a measurement error on some parameters. As a result, we can directly
compare the order of the computational error and the modeling error, and determine
whether the consequences obtained by computation are genuinely informative. This
is the key point that underlies the claim that the formal model provides measures of
computational errors that are directly interpretable in terms of modeling error.

Now, the next question is: what is the relationship between the forward and the
backward error? The relationship we seek lies in a problem-specific coefficient of
magnification, i.e., the sensitivity of the solution to perturbations in the data, that is
called the condition of the problem.17 The normwise relative condition number κ is
the supremum of the ratio of the relative change in the solution to the relative change
in input, which is expressed by

κrel = sup
x

‖δy‖
‖δx‖ = sup

x

‖�y/y‖
‖�x/x‖ = sup

x

∥∥(ϕ(x̂) − ϕ(x))/ϕ(x)
∥∥∥∥(x̂ − x)/x

∥∥
for some norm ‖ · ‖. As a consequence, we can show that the relation

‖δy‖ ≤ κrel‖δx‖ (3)

holds between the forward and the backward error. We clearly see from this inequality
that the condition number acts as a magnifying factor of the error in the data. Knowing
the backward error and the condition number thus gives us an upper bound on the
forward error. If κ has a moderate size, we say that the problem is well-conditioned.
Otherwise, we say that the problem is ill-conditioned.18 Thus, if the problem is well-
conditioned, i.e., κ ≈ 1, then the error in the solution cannot possibly be much larger

16 Such an equation in z can be called a reverse-engineered problem. The name is suggestive because we
first solve the problem numerically, and then we use the computed solution to determine what perturbed
problem we have in fact solved exactly.
17 Well-conditioning must be distinguished from the concepts of stability of a problem-solving method.
There is no unique way of formalizing the notion of numerical stability, but its underlying intuitive idea is
that an algorithm is numerically stable if it returns results that are about as accurate as the problem and the
resources available (typically determined by choosing a system of floating-point arithmetic) allow. Thus, it
is similar to the concept of conditioning, but it is a property of methods rather than problems. For rigorous
definitions, see, e.g., Higham (2002) and Deuflhard and Hohmann (2003).
18 Infinitely ill-conditioned problems are known as ill-posed problems in analysis, following Hadamard. See
Earman (1986) for a rare discussion in the philosophical literature. Moreover, even if he doesn’t specifically
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than the error in the data. In such a case, we can conclude that our strategy provides
a solution that is just as good as the exact solution to the reference problem, even if
this solution is unknown.

The condition number, depending on the context, will be given by mathematical
quantities such as vector and matrix norms, Lipschitz constants, Gröbner functions,
Lyapunov exponents, and other coefficients of sensitivity/stability commonly used in
perturbation theory. As a result, not only is the measure of computational error directly
interpretable in terms of modeling error, but the analysis of the quality of solutions
mirrors the standard methods of perturbation theory for dynamical systems, including
systems studied in physics, chemistry, biology, economics, etc.

5 Conclusion

As we have seen, backward error analysis is a form of error analysis that permits us
to substitute all sources of variation in the solution of a problem by an equivalent
perturbation in the input of the original problem, and this whether or not the exact
solution is known. Thus, the computational error is mathematically equivalent to a
modeling error in the first sense. Accordingly, the further task of integrating those
methods within philosophy of science does not amount to developing a new meta-
physics, epistemology, semantics, or methodology of science. Rather, the task is to
better delineate the role perturbative methods play in science, and extract insights for
the problems of philosophy of science as they are currently construed (along the line
of Batterman (2002b) and Wilson (2006)). As suggested above, this can be done by
extending the formal methods of epistemology to make explicit the sense in which con-
cepts from perturbation theory complement the more commonly employed concepts
of satisfaction (from model theory) and probability.

However, to achieve this goal, rational reconstructions of scientific practice have to
be more sensitive to the mathematical difficulties encountered in practice. Analyzing
the nature of “in principle” science is a common gambit in philosophy of science.
Nonetheless, some adequacy with the practice of model construction has to be pre-
served. In this respect, we should remind ourselves that “the assumption that as soon
as a fact is presented to a mind all consequences of that fact spring into the mind simul-
taneously with it […] is a very useful assumption under many circumstances, but one
too easily forgets that it is false” (Turing 1950). In real as opposed to “in principle”
science, the fact that scientists are swamped with intricate computational complica-
tions cannot be disregarded. Without efficient numerical and analytic approximation
schemes, there is no explanation and no prediction, no empirical or pragmatic success
to boost our confidence in the correctness of the models and of the general laws. In
this respect, in principle science has no empirical nor theoretical grounds. Hence, our
rational reconstruction of theories should include the concepts of computational error
analysis.

discuss the concept of well-conditioning, Duhem (1906) has an extended discussion of “les mathématiques
de l’à peu près” based on Hadamard’s work.
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Moreover, as we have argued, it should not only include them, but it should also
explicate the way in which they relate to modelling error. Accordingly, rational recon-
structions should focus not only on what theories are, and on what models are, but also
on how models are constructed within theories by deriving equations from modeling
assumptions, and how different modeling assumptions compare with respect to their
solutions. The formal methods will be extended adequately only if they can explain
the way in which scientific arguments and representations are effectively constructed,
and how the derived model equations are effectively solved. Accordingly, the point of
the epistemology of sciences is not to try to counterfactually understand how science
would be without errors and uncertainty, but rather the point is to understand how we
can live with them. For, as Russell (1954) put it, “[a]lthough this may seem a paradox,
all exact science is dominated by the idea of approximation.”

Acknowledgments First and foremost, we would like to thank Robert Batterman. We would also like
to thank Erik Curiel, Bill Harper, Robert Moir, Chris Pincock, Bryan Roberts, Chris Smeenk, and two
anonymous referees for their useful suggestions.

References

Barberousse, A., Franceschelli, S., & Imbert, C. (2009). Computer simulations as experiments. Synthese,
169(3), 557–574.

Batterman, R. W. (2002a). Asymptotics and the role of minimal models. British Journal for the Philosophy
of Science, 53, 21–38.

Batterman, R. W. (2002b). The devil in the details: Asymptotic reasoning in explanation, reduction, and
emergence. Oxford: Oxford University Press.

Bender, C., & Orszag, S. (1978). Advanced mathematical methods for scientists and engineers: Asymptotic
methods and perturbation theory (Vol. 1). New York: Springer.

Butcher, J. (2008). Numerical analysis. Journal of Quality Measurement and Analysis, 4(1), 1–9.
Carnap, R. (1928). The logical structure of the world (R. A. George, Trans., 1967). Berkeley: University of

California Press.
Corless, R. M. (1994). Error backward. In P. Kloeden & K. Palmer (Eds.), Proceedings of chaotic numerics,

Geelong, 1993, volume 172 of AMS contemporary mathematics (pp. 31–62).
Corless, R. M., & Fillion, N. (2014). A graduate introduction to numerical methods, from the

viewpoint of backward error analysis. New York: Springer. http://www.springer.com/mathematics/
computational+science+%26+engineering/book/978-1-4614-8452-3

Deuflhard, P., & Hohmann, A. (2003). Numerical analysis in modern scientific computing: An introduction
(Vol. 43). New York: Springer.

Duhem, P. (1906). La Théorie physique: Son objet et sa structure. Paris: Chevalier & Rivière.
Earman, J. (1986). A primer on determinism, volume 32 of The University of Western Ontario series in

philosophy of science. Dordrecht: D. Reidel Publishing Company.
Earman, J., Roberts, J., & Smith, S. R. (2002). Ceteris paribus lost. Erkenntnis, 57, 281–301.
Fillion, N. (2011). Backward error analysis as a model of computation for numerical methods. Master’s

thesis, The University of Western Ontario, London, ON.
Fillion, N. (2012). The reasonable effectiveness of mathematics in the natural sciences. PhD thesis, The

University of Western Ontario, London, ON.
Hartmann, S. (1996). The world as a process. Simulations in the natural and social sciences. In R. U. M.

Hegselmann & K. Troitzsch (Eds.), Modelling and simulation in the social sciences from the philosophy
of science point of view (pp. 77–100). Dordrecht: Kluwer.

Higham, N. J. (2002). Accuracy and stability of numerical algorithms (2nd ed.). Philadelphia: SIAM.
Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method.

Oxford: Oxford University Press.
Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–

626.

123

http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-1-4614-8452-3
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-1-4614-8452-3


Synthese (2014) 191:1451–1467 1467

Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data—Guide to the expression
of uncertainty in measurement. Technical report JCGM 100:2008, Bureau International des Poids et
Mesures. Revised Edition of GUM 1995.

Kelly, K. (1996). The logic of reliable inquiry. Oxford: Oxford University Press.
Morrison, M. (2009). Models, measurement and computer simulation: The changing face of experimenta-

tion. Philosophical Studies, 143, 33–57.
Oberkampf, W., Trucano, T., & Hirsch, C. (2004). Verification, validation, and predictive capability in

computational engineering and physics. Applied Mechanics Review, 57(5), 345–384.
Parker, W. S. (2010). An instrument for what? Digital computers, simulation and scientific practice. Spon-

taneous Generations: A Journal for the History and Philosophy of Science, 4(1), 39–44.
Pincock, C. (2012). Mathematics and scientific representation. Oxford studies in the philosophy of science

series. Oxford: Oxford University Press.
Putnam, H. (1991). The “corroboration” of theories. In R. Boyd, P. Gasper, & J. D. Trout (Eds.), The

Philosophy of science (pp. 121–137). Cambridge, MA: MIT Press.
Reichenbach, H. (1938). Experience and prediction: An analysis of the foundations and the structure of

knowledge. Chicago: The University of Chicago Press.
Roache, P. (2001). Code verification by the method of manufactured solutions. Journal of Fluids Engineer-

ing, 124(1), 4–10.
Russell, B. (1954). The scientific outlook (2nd ed.). London: George Allen & Unwin Ltd.
Salmon, W. (1970). Bayes’s theorem and the history of science. In R. Stuewer (Ed.), Historical and philo-

sophical perspectives of science, Vol. 5 of Minnesota studies in the philosophy of science (pp. 68–86).
Minneapolis: University of Minnesota Press.

Smith, S. R. (2001). Models and the unity of classical physics: Nancy Cartwright’s dappled world. Philos-
ophy of Science, 68(4), 456–475.

Smith, S. R. (2002). Violated laws, ceteris paribus clauses, and capacities. Synthese, 130, 235–264.
Stein, H. (1995). Some reflections on the structure of our knowledge in physics. Studies in Logic and the

Foundations of Mathematics, 134, 633–655.
Taylor, B. N., & Kuyatt, C. E. (1994). Guidelines for evaluating and expressing the uncertainty of NIST

measurement results. Technical report NIST technical note 1297, National Institute of Standards and
Technology.

Thagard, P. (1993). Computational philosophy of science. Cambridge, MA: The MIT Press.
Trefethen, L. N. (1992). The definition of numerical analysis. SIAM News, 25, 6–22.
Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.
Von Neumann, J., & Goldstine, H. (1947). Numerical inverting of matrices of high order. Bulletin of the

American Mathematical Society, 53(11), 1021–1099.
Wang, Q. (1990). The global solution of the n-body problem. Celestial Mechanics and Dynamical Astron-

omy, 50(1), 73–88.
Wilkinson, J. H. (1971). Modern error analysis. SIAM Review, 13(4), 548–568.
Wilson, M. (1998). Mechanics, classical. In E. Craig (Ed.), Routledge encyclopedia of philosophy. London:

Routledge.
Wilson, M. (2006). Wandering significance: An essay on conceptual behaviour. Oxford: Oxford University

Press.
Winsberg, E. (2009). Computer simulation and the philosophy of science. Philosophy Compass, 4, 835–845.

123


	On the epistemological analysis of modeling and computational error in the mathematical sciences
	Abstract
	1 Introduction
	2 Exact and inexact solutions of models
	3 Modeling and computational error
	4 Problems and methods in error analysis
	5 Conclusion
	Acknowledgments
	References


